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Abstract

Purpose. To develop an automated classifier based on adaptive neuro-fuzzy inference system (ANFIS) to differentiate between normal
and glaucomatous eyes from the quantitative assessment of summary data reports of the Stratus optical coherence tomography (OCT) in
Taiwan Chinese population.

Methods. This observational non-interventional, cross-sectional, case–control study included one randomly selected eye from each of
the 341 study participants (135 patients with glaucoma and 206 healthy controls). Measurements of glaucoma variables (retinal nerve
fiber layer thickness and optic nerve head topography) were obtained by Stratus OCT. Decision making was performed in two stages:
feature extraction using the orthogonal array and the selected variables were treated as the feeder to adaptive neuro-fuzzy inference sys-
tem (ANFIS), which was trained with the back-propagation gradient descent method in combination with the least squares method.
With the Stratus OCT parameters used as input, receiver operative characteristic (ROC) curves were generated by ANFIS to classify
eyes as either glaucomatous or normal.

Results. The mean deviation was �0.67 ± 0.62 dB in the normal group and �5.87 ± 6.48 dB in the glaucoma group (P < 0.0001). The
inferior quadrant thickness was the best individual parameter for differentiating between normal and glaucomatous eyes (ROC area,
0.887). With ANFIS technique, the ROC area was increased to 0.925.

Conclusions. With Stratus OCT parameters used as input, the results from ANFIS showed promise for discriminating between glau-
comatous and normal eyes. ANFIS may be preferable since the output concludes the if–then rules and membership functions, which
enhances the readability of the output.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A method for detecting and documenting optic nerve
structure should be part of routine clinical management
of glaucoma. However, according to limited evidence avail-
able sensitivity and specificity of imaging instruments for
detecting of glaucoma are comparable to that of expert
evaluation of stereo color-photography. Recently, digital
imaging, such as scanning laser tomography, scanning laser
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polarimetry and optical coherence tomography, is recom-
mended as a clinical tool to enhance and facility the assess-
ment of the optic disc and nerve fiber layer in glaucoma
management. Structural measurement of the ONH and
RNFL offers the prospect of improving the early detection
of glaucoma (Choplin, Lundy, & Dreher, 1998; Cioffi,
Robin, & Eastman, 1993; Hoh, Greenfield, & Mistlberger,
2000; Greany, Hoffman, & Garway-Heath, 2002; Sanchez-
Galeana, Bowd, & Blumenthal, 2001; Uchida, Brigatti, &
Caprioli, 1996; Wollstein, Garway-Heath, & Hitchings,
1998).

The ability to early glaucoma detection using these
instruments has been widely described and discussed
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(Chen, Hung, & Hung, 2005; Chen, Wang, Lee, & Hung,
in press; Choplin et al., 1998; Cioffi et al., 1993; Hoh
et al., 2000; Greany et al., 2002; Sanchez-Galeana et al.,
2001; Uchida et al., 1996; Wollstein et al., 1998; Hoh,
Ishikawa, & Greenfield, 1998; Horn, Jonas, & Martus,
1999; Schuman, Hee, & Puliafito, 1995; Weinreb, Shakiba,
& Sample, 1995). Automatic analysis of results using
appropriate databases is helpful for identifying abnormal-
ities consistent with glaucoma. Structural assessment
should preferably include such a biostatistical analysis
(Greany et al., 2002). Classification quantitative struc-
ture–activity relationship studies are used for both the
selection of principal physicochemical characteristics
(descriptors) and relating them to biological activities
and the derivation of mathematical models that involve
these multivariate data in order to be used for predictive
purposes in drug design (Loukas, 2001). Neural networks
and fuzzy logic are two complimentary technologies. Neu-
ral networks can learn from data and feedback; however,
the understanding of the knowledge or the pattern learned
by the neural networks has been difficult. Conversely,
fuzzy rule-based models are easy to comprehend because
it uses linguistic terms and the structure of if–then rules.
Unlike neural networks, fuzzy logic does not come with
a learning algorithm. The combination of neural networks
and fuzzy logic has created a new term as a neuro-fuzzy
system (Yen & Langari, 1999). Neural networks, fuzzy sys-
tems, and the combination of both have been successfully
applied to computer aided diagnosis such as microcalcifica-
tion detection (Cheng, Lui, & Freimanis, 1998; Yu &
Guan, 2000), automatic detection of distorted plethysmo-
gram pulses in neonates and paediatric patients (Belal
et al., 2002), detection of erythemato-squamous diseases
(Übeyli & Güler, 2005) and lung nodule detection (Penedo,
Carreira, Mosquera, & Cabello, 1998). Fuzzy inference
systems have been successfully applied in fields such as
automatic control, data classification, decision analysis,
and computer vision (Fuzzy Logic Toolbox, 2005). Since
slight variations in the parameters resulting from measure-
ment errors might change the classification decision, fuzzy
set theory plays an important role in dealing with uncer-
tainty when making decisions in medical applications
(Belal et al., 2002).

The purpose of this study was to evaluate the perfor-
mance of fuzzy logic systems for glaucoma detect using
Stratus OCT data.

2. Methods

This observational non-interventional, cross-sectional
study included one randomly selected eye from each of
the 341 study participants (135 patients with glaucoma
and 206 healthy controls). All recruited cases were exam-
ined in the glaucoma service, Department of Ophthalmol-
ogy, China Medical University Hospital. China Medical
University Hospital is the ophthalmic referral center in
mid-Taiwan area. Informed consent was obtained from
all participants, and the study was approved by the Institu-
tional Review Board of the China Medical University Hos-
pital. This research follows the tenets of the Declaration of
Helsinki.

All subjects underwent a complete ophthalmic examina-
tion, including slit lamp biomicroscopy, measurement of
intraocular pressure, stereoscopic fundus examination
and standard full threshold automated perimetry (30-2
mode, Humphrey Field Analyzer, model 750, HFA;
Carl–Zeiss Meditec, Inc.). The inclusion criteria were best
corrected visual acuity not worse than 20/40, spherical
refractive error within the range of �6.00 D to +3.00 D,
and reliable Humphrey visual field test results, defined as
having fixation loss <20% and false-positive and false-neg-
ative errors <25%. Subjects were excluded if they had a his-
tory of previous ocular surgery or other retinal disease,
optic disc anomalies such as coloboma or optic disc drusen,
or any kind of neurologic diseases that might cause visual
field defects.

Inclusion criteria for normal subjects included no his-
tory of eye disease, no family history of glaucoma, intraoc-
ular pressure lower than 21 mmHg when measured by
Goldmann applanation tonometry and normal optic disc
appearance based on clinical stereoscopic examination. A
normal result on the glaucoma hemifield test and corrected
standard deviation (HFA, program 30-2) within normal
limits were required. Subjects with normal eyes were volun-
teers from the staff at the China Medical University Hospi-
tal. Inclusion criteria for the patients with glaucoma were
an early reproducible glaucomatous visual field defect in
the absence of any other abnormalities to explain the
defect, and a mean deviation of more than �7 dB. The
mean age was 44.6 ± 14.3 years in the normal group and
42.8 ± 13.3 years in the glaucoma group. There was no sig-
nificant difference in age between the two groups (t-test,
P = 0.228). There was a significant difference in mean devi-
ation of visual field between the normal group (�0.67 ±
0.62 dB) and the glaucoma group (�5.87 ± 6.48 dB) (t-test,
P < 0.0001). Among the 135 glaucoma patients, 75 with
high-tension open angle glaucoma, 25 with low-tension
open angle glaucoma, 25 with primary angle closure glau-
coma, and 10 with secondary glaucoma. All the glaucoma
patients had received at least 12 months regular follow-up
at the glaucoma service at China Medical University Hos-
pital between March 2004 and March 2005. In this study,
the patient with open-angle glaucoma and no history of
documented intraocular pressure >21 mmHg was defined
as having low-pressure glaucoma, whereas the patient with
intraocular pressure >21 mmHg and no identifiable sec-
ondary causes was classified as having primary open-angle
glaucoma. Glaucoma with a closed angle on gonioscopy
with no evidence of secondary angle closure detected in
the first visit was defined as primary angle-closure glau-
coma. Second glaucoma included five uveitic glaucoma
cases and five traumatic angle recession glaucoma cases.
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2.1. Stratus OCT measurements

The Stratus OCT (Version A 4.0, Carl Zeiss Meditec
Inc., Dublin, California, USA) consisted of an infrared-
sensitive video camera to provide a view of the scanning
probe beam on the fundus, a low-coherence interferometer
as light source and detection unit, a video monitor, a com-
puter and an image analysis system. The basic principles
and technical characteristics of Stratus OCT have been
described extensively (Schuman, 2004; Zafar, Gürses-Öz-
den, & Makornwattana, 2004). The Stratus OCT delineates
intraretinal and cross-sectional anatomy with axial resolu-
tion of 610 lm and transverse resolution of 20 lm. The
Stratus OCT software package includes 18 scan acquisition
protocols and 18 analysis protocols. Together they enable
the optic disc, RNFL and the macula to be analyzed with
a single instrument. The OCT protocol in our study
included a regular 3.4 mm circular scan to determine
RNFL thickness and a fast ONH radial scan to measure
optic disc topography. All scans were completed in a single
session by a trained operator after pupil dilatation with tro-
picamide 1% to achieve a minimal pupillary diameter of
6 mm.

The OCT protocol in our study included regular
3.4 mm circular scan to determine RNFL thickness. The
RNFL thickness 3.4 mm scan protocol consisted of three
separate circular scans with a diameter of 3.4 mm cen-
tered on the optic disc, each of which consisted of 512
A-scans obtained in 1.28 s. The total scan time for the
three scans is between 1 and 2 min as each B-scan is
briefly reviewed and saved before a subsequent scan can
be recorded. The results were obtained from the mean
of three scans. The NFL thickness was determined by
the difference in distance between the vitreoretinal inter-
face and a posterior boundary based on a predefined
reflectivity signal level. A good-quality scan was one with
a signal-to-noise ratio of >35, 100% accepted A-scans and
good delineation of the anatomic boundaries. Subjects
were not included in the study if the quality of the
OCT image was suboptimal. The RNFL thickness report
included the OCT image, the fundus image, and the thick-
ness chart. Circular diagrams showed quadrant (temporal,
superior, nasal, inferior) thickness and clock-hour RNFL
thickness (11 o’clock = superior temporal: 45–75�; 1
o’clock = superior nasal: 105–135�; 7 o’clock = inferior
temporal: 285–315�; 9 o’clock, temporal: 345–15�). The
average RNFL thickness was the average thickness along
the entire circumference of the optic disc.

The fast ONH radial scan protocol consisted of six lin-
ear scans crossing the optic scan. This protocol acquires six
4 mm radial scans in 1.92 s. The machine automatically
determined the edge of the ONH as the end of the retinal
pigment epithelium/choriocapillaris layer. This could be
manually corrected in cases where the machine did not
identify the edge correctly. A straight line connected the
edges of the retinal pigment epithelium/choriocapillaries,
and a parallel line was constructed 150 lm anteriorly.
The structure below this line was defined as the disc cup
and the structure above this line was defined as the neu-
roretinal rim. OCT ONH analysis measured the following:
vertically integrated rim area volume, horizontally inte-
grated rim width, disc area, cup area, rim area, cup/disc
(C/D) area ratio, C/D horizontal ratio, and C/D vertical
ratio.

Quality assessment of Stratus OCT scans was deter-
mined by an experienced examiner. Good quality scans
had to have focused ocular fundus images, the signal
strength needed to greater than six and a centered circular
ring around the optic disc had to be present. Patients with
unacceptable Stratus OCT scans were excluded from fur-
ther analysis. ONH images were excluded when the
machine incorrectly determined the edge of the ONH as
the end of the retinal pigment epithelium/choriocapillaris
layer in automatic mode; the ONH image was unaccept-
able; and images which could not be analyzed in the soft-
ware A 4.0 version, such as those with very small C/D
ratios. Therefore, the disc margin in our study was auto-
matically defined in all eyes.

We selected the average RNFL thickness, quadrant
thickness (temporal, superior, nasal, inferior), 12 clock
hour (30� sector) RNFL thicknesses, and ONH analysis
results (vertical integrated rim area, horizontal integrated
rim area, disk area, cup area, rim area, cup/disk area ratio,
cup/disk horizontal ratio, cup/disk vertical ratio) as our 25
input parameters. The perimetry and OCT examinations
were all performed within a maximum period of 2 weeks.
If the tests were done on the same day, the perimetry exam-
ination was done first.

2.2. Two-stage procedures

The collection of sufficient and accurate input data is the
basic requirement to obtain an accurate model. Decision
making was performed in two stages: feature extraction
using the orthogonal array and the ANFIS trained with
the back-propagation gradient descent method in combina-
tion with the least squares method.

2.3. Properties of orthogonal arrays

Orthogonal arrays have been developed to accomplish
experiment designs with a number of arrays. Orthogonal
arrays are designated by the notation L (L for Latin
squares) with a subscript. The subscript refers to the
number of rows in the table, which indicates the number
of combinations in the design. The word orthogonal
means in terms of array is that the columns of the arrays
are balanced not only within themselves but also in any
two columns in the array. That is, there are an equal
number of levels within a column and the combinations
of the levels between the columns considered are also
equal in number.
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2.4. Feature extraction using orthogonal arrays

Selection of the ANFIS inputs is crucial of designing the
classifier based on pattern classification since even the best
classifier will perform poorly if the inputs are not selected
well. The selection of inputs is to find which sets of the
input components can best represent a given pattern. There
are many ways to perform feature selection. In this study,
the orthogonal array (L32) was chosen. Since each variable
can be the candidate as one of the input components, two
levels for each variable is set to present ‘‘chosen’’ (level 1)
and ‘‘not chosen’’ (level 2) in the orthogonal array. The lar-
ger-the-better signal-to-noise (S/N) ratios were calculated
according to the formula below:

S=N ¼ �10log10

1

n

Xn

i¼1

y2
i

 !
ð1Þ

where yi is the ith observation in each experiment
combination.

Variables with higher S/N ratios are considered as useful
variables and will be treated as input parameters for
ANFIS. From the result of analysis of variance (ANOVA,
Table 1) and response table (Table 2), the parameter com-
binations used as the input of ANFIS were inferior quad-
Table 1
Analysis of variance of S/N ratios for feature selection

Parameter Factor Dfa

Temporal quadrant T (1)
Superior quadrant S 1
Nasal quadrant N (1)
Inferior quadrant I 1
Average RNFL thickness (lm) Average (1)

O’clock hour segment thickness

12 X1 1
11 (superior temporally) X2 1
10 X3 1
9 (temporal) X4 (1)
8 X5 (1)
7 (inferior temporally) X6 (1)
6 X7 (1)
5 X8 1
4 X9 (1)
3 (nasal) X10 (1)
2 X11 1
1 X12 (1)

ONH analysis result

Vertical integrated rim area Y1 1
Horizontal integrated rim width Y2 1
Disc area Y3 1
Cup area Y4 1
Rim area Y5 (1)
Cup/disk area ratio Y6 (1)
Cup/disk horizontal ratio Y7 (1)
Cup/disk vertical ratio Y8 (1)

Error 20

Total 31

‘‘#’’ denotes statistical significance, and those parameters with ‘‘#’’ will be us
a df: degree of freedom, SS: sum of square, MS: mean square.
rant thickness, 2, 5, 10 and 12 o’clock segment thickness,
vertical integrated rim area and horizontal integrated rim
width.
2.5. Adaptive neuro-fuzzy inference system (ANFIS)

Fuzzy inference is the process of formulating the map-
ping from a given input to an output using fuzzy logic.
The mapping then provides a basis from which decisions
can be made, or patterns discerned. The process of fuzzy
inference includes membership functions, fuzzy logic oper-
ators, and if–then rules (Fuzzy Logic Toolbox, 2005).

ANFIS provides a method for the fuzzy modeling pro-
cedure to learn information about a dataset, in order to
compute the membership function parameters that best
allow the associated fuzzy inference system to track the
given input/output data (Fuzzy Logic Toolbox, 2005).
2.6. Architecture of ANFIS

Fig. 1 shows the five layers in ANFIS (Yen & Langari,
1999). In the first layer, all the nodes are adaptive nodes.
The outputs of layer 1 are the fuzzy membership grade of
the inputs, which are given by
SSa MSa F

(10.66) – –
166.3 166.3 2.06
(9.6) – –
1088.9 1088.9 13.48#

(98.29) – –

1042.71 1042.71 12.91#

331.61 331.61 4.11
437.61 437.61 5.42#

(43.17) – –
(55) – –
(21.25) – –
(46.59) – –
608.82 608.82 7.54#

(37.51) – –
(2.75) – –
657.38 657.38 8.14#

(2) – –

489.43 489.43 6.06#

353.76 353.76 4.38#

343.17 343.17 4.25
208.14 208.14 2.58
(6.33) – –
(0.16) – –
(55.55) – –
(24.45) – –
1615.52 80.776

7343.38

ed for further processing.



Table 2
Response table of S/N ratios for features selection

Level Factor

T S N I Average X1 X2 X3 X4

1 10.143 8.441 11.268 16.554 12.473 16.429 13.940 14.419 9.559
2 11.298 13.000 10.173 4.887 8.968 5.012 7.501 7.023 11.882

Difference 1.154 4.559 1.096 11.667 3.505 11.417 6.438 7.396 2.323

X5 X6 X7 X8 X9 X10 X11 X12 Y1

1 12.032 11.535 9.514 15.082 9.638 11.014 15.253 10.971 14.631
2 9.410 9.906 11.927 6.359 11.803 10.427 6.188 10.470 6.810

Difference 2.622 1.630 2.413 8.724 2.165 0.586 9.065 0.500 7.822

Y2 Y3 Y4 Y5 Y6 Y7 Y8

1 14.045 7.446 13.271 10.276 10.650 9.403 11.595
2 7.396 13.995 8.170 11.165 10.791 12.038 9.846

Difference 6.650 6.549 5.101 0.890 0.141 2.635 1.748

Fig. 1. The architecture of adaptive neuro-fuzzy inference system: five
layers in adaptive neuro-fuzzy inference system.

Table 3
Parameter design of ANFIS

Factor Level

1 2 3

Range of influence 0.3 0.6 0.9
Initial step size 0.005 0.01 0.015
Step size decrease rate 0.3 0.6 0.9
Step size increase rate 1.1 1.4 1.7
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y1
i ¼ lAi

ðx1Þ; i ¼ 1; 2 ð2Þ
y1

i ¼ lBði�2Þ
ðx2Þ; i ¼ 3; 4 ð3Þ

where lAi
ðx1Þ, lBi

ðx2Þ can adapt any fuzzy membership
function.

In the second layer, every node in this layer is a fixed
node, whose output is the product of all the incoming
signals:

y2
1 ¼ W 1 ¼ lA1

ðx1Þ � lB1
ðx2Þ ð4Þ

y2
2 ¼ W 2 ¼ lA1

ðx1Þ � lB2
ðx2Þ ð5Þ

y2
3 ¼ W 3 ¼ lA2

ðx1Þ � lB1
ðx2Þ ð6Þ

y2
4 ¼ W 4 ¼ lA2

ðx1Þ � lB2
ðx2Þ ð7Þ

In the third layer, each node in this layer is a fixed node.
The ith node calculates the ratio of the ith rule’s firing
strength to the sum of all rules firing strength:

y3
i ¼ W i ¼

W i

W 1 þ W 2 þ W 3 þ W 4

; i ¼ 1; 2; 3; 4 ð8Þ

which are so-called normalized firing strengths.
Every node i in the fourth layer is an adaptive node with
a node function:

y4
i ¼ W ifi ¼ W i � ðpix1 þ qix2 þ riÞ; i ¼ 1; 2; 3; 4 ð9Þ

where W i is a normalized firing strength from layer 3 and
{pi,qi, ri} is the parameter set of this node. Parameters in
this layer are referred to as consequent parameters.

In the fifth layer, the single node in this layer is a fixed
node, which computes the overall output as the summation
of all incoming signals:

y5 ¼
X4

i¼1

W ifi ð10Þ

Thus, the ANFIS was constructed and can be functionally
equivalent to a first-order Sugeno fuzzy model. It will be
used in the present glaucoma study due to its transparency
and efficiency.

2.7. Parameter design of ANFIS

Since there are many possible levels for factor including
range of influence, initial step size, step size decrease rate,
and step size increase rate in ANFIS, a L9 orthogonal array
(Table 3) was performed to figure out the best combination
of parameters used in ANFIS. From factor effect analysis
and ANOVA, the step size for parameter adaptation had
an initial value of 0.005, the range of influence was 0.9,
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the step size decrease rate was 0.3, and the step size increase
rate was 1.4.

The adequate function of ANFIS depends on the sizes
of the training set and the testing set. In this study, the
training set and testing set were formed by 230 and 111
data. The 230 data (140 normal cases and 90 glaucomatous
cases) was used for training and the remaining 111 data (66
normal cases and 45 glaucomatous cases) was used for test-
ing. In order to enhance the generalization capability of the
ANFIS, the training and the testing sets were collected
from different individuals. The ANFIS shown in Fig. 1
was implemented by using Matlab software package (Mat-
lab version 6.5 with fuzzy logic toolbox).
Table 4
Subject demographics

Normal Glaucoma p-Valuea

Gender
Male, n (%) 93(45.15%) 89(65.93%)
Female, n (%) 113(54.84%) 46(34.07%)

Age (years), mean ± SD 44.6 ± 14.3 42.8 ± 13.3 0.228
Mean deviation,

mean ± SD (dB)
�0.67 ± 0.62 �5.87 ± 6.48 < 0.0001

Refraction,
mean ± SD (Diopters)

a Compared by t-test.

Table 5
Stratus OCT glaucoma variables included in the 25 input set

Parameter Factor Norm

Average RNFL thickness (lm) Average 112.2
Temporal quadrant T 84.2
Superior quadrant S 137.0
Nasal quadrant N 84.2
Inferior quadrant I 143.7

O’clock hour segment thickness

12 X1 134.4
11 (superior temporally) X2 147.8
10 X3 99.7
9 (temporal) X4 68.2
8 X5 88.8
7 (inferior temporally) X6 160.0
6 X7 152.2
5 X8 119.3
4 X9 82.9
3 (nasal) X10 73.5
2 X11 97.0
1 X12 129.6

ONH analysis result

Vertical integrated rim area Y1 0.5
Horizontal integrated rim width Y2 1.8
Disc area Y3 2.5
Cup area Y4 0.7
Rim area Y5 1.8
Cup/disk area ratio Y6 0.2
Cup/disk horizontal ratio Y7 0.5
Cup/disk vertical ratio Y8 0.4

a Compared by t-test.
3. Results

3.1. Stratus OCT

The mean age was 44.6 ± 14.3 years in the normal group
and 42.8 ± 13.3 years in the glaucoma group. There was no
significant difference in age between the two groups (t-test,
P = 0.228). There was a significant difference in mean devi-
ation of visual field between the normal group (�0.67 ±
0.62 dB) and the glaucoma group (�5.87 ± 6.48 dB) (t-test,
P < 0.0001) (Table 4).

Table 5 lists the statistical results in both groups of 25
glaucoma variables measured from Stratus OCT. There
were 25 comparisons of variables; for a < 0.05, the Bonfer-
roni adjustment required P < 0.002 (0.05/25 = 0.002) for
the difference to be considered significant. The t-test
revealed significant differences between both groups on
all of the parameters used in the study except disk area
(P = 0.725 > 0.002).

3.2. Classification results

Table 6 summarizes the sensitivities, specificities and
areas under the ROC curves for 25 individual parameters.
The inferior quadrant thickness was the best individual
parameter for differentiating between normal eyes and
glaucomatous eyes (ROC area, 0.887). The average RNFL
al Glaucoma p-Valuea

± 12.2 83.9 ± 22.1 <0.0001
± 16.2 72.1 ± 25.2 <0.0001
± 17.4 103.7 ± 29.5 <0.0001
± 19.6 62.0 ± 19.0 <0.0001
± 18.6 97.9 ± 32.6 <0.0001

± 25.8 103.2 ± 33.7 <0.0001
± 21.7 112.38 ± 38.0 <0.0001
± 20.0 82.1 ± 30.9 <0.0001
± 15.5 60.4 ± 22.1 <0.0001
± 20.3 74.0 ± 30.5 <0.0001
± 26.7 109.0 ± 45.0 <0.0001
± 26.1 102.3 ± 40.5 <0.0001
± 24.3 83.6 ± 27.1 <0.0001
± 21.7 61.1 ± 20.9 <0.0001
± 20.6 54.9 ± 18.1 <0.0001
± 25.2 72.5 ± 24.0 <0.0001
± 24.2 96.3 ± 29.5 <0.0001

09 ± 0.409 0.253 ± 0.210 <0.0001
04 ± 0.269 1.443 ± 0.356 <0.0001
3 ± 0.434 2.510 ± 0.571 0.725
17 ± 0.432 1.223 ± 0.679 <0.0001
07 ± 0.402 1.307 ± 0.528 <0.0001
75 ± 0.135 0.481 ± 0.226 <0.0001
52 ± 0.154 0.702 ± 0.164 <0.0001
69 ± 0.128 0.684 ± 0.554 <0.0001



Table 6
The sensitivity and specificity of individual parameters

Parameter Sensitivity ROC area (%)

Specificity of 80% Specificity of 90%

Average RNFL thickness (lm) 0.800 0.696 87.6
Temporal quadrant 0.474 0.274 64.4
Superior quadrant 0.689 0.526 83.2
Nasal quadrant 0.711 53.7 79.7
Inferior quadrant 0.807 0.733 88.7

O’clock hour segment thickness

12 0.578 0.459 76.0
11 0.570 0.504 77.8
10 0.481 0.452 66.9
9 0.459 0.356 64.2
8 0.444 0.378 62.9
7 0.674 0.570 82.4
6 0.756 0.689 84.1
5 0.726 0.637 84.1
4 0.615 0.430 77.0
3 0.578 0.452 76.3
2 0.644 0.474 76.8
1 0.711 0.563 80.9

ONH analysis result

Vertical integrated rim area 0.607 0.504 78.4
Horizontal integrated rim width 0.622 0.504 78.8
Disc area 0.274 0.163 53.8
Cup area 0.570 0.481 73.1
Rim area 0.593 0.496 77.6
Cup/disk area ratio 0.622 0.570 77.3
Cup/disk horizontal ratio 0.548 0.481 74.1
Cup/disk vertical ratio 0.644 0.541 77.7
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thickness was the second best parameter (ROC area,
0.876). In addition, both 5 o’clock and 6 o’clock hour seg-
ment thickness ranked third (ROC area, 0.841).
Fig. 2. The fuzzy rule architecture of the ANFIS using the generalized
bell-shaped membership function.
Fig. 2 shows the fuzzy rule architecture of the ANFIS
using the generalized bell-shaped membership function.
There are three fuzzy rules in the architecture. The ANFIS
shown in Fig. 3 used 230 training data in 100 training peri-
ods and the final mean square error was 0.3315. The mem-
bership functions for individual parameters are almost
consistent before and after training in ANFIS except
parameter horizontal integrated rim width. The before
and after training membership functions for horizontal
integrated rim width were displayed in Fig. 4. For the train-
Fig. 3. The convergence plot after training of ANFIS. The final mean
square error was 0.3315.



Fig. 4. The before and after training membership functions for horizontal integrated rim width.

Table 7
ANFIS classification results

Training set Testing set

Test Disease Total Test Disease Total

Present Absent Present Absent

Positive 78 11 89 Positive 35 6 41
Negative 12 129 141 Negative 10 60 70

Total 90 140 230 Total 45 66 111

Accuracy 90.00% Accuracy 85.6%
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ing set, the area under the ROC curve from ANFIS was
0.942 with 0.889 and 0.878 sensitivities at 80% and 90%
specificities. The overall accuracy was 90.0% for the train-
ing set (Table 7). For the testing set, the area under the
ROC curve from ANFIS was 0.925 with 0.867 and 0.800
sensitivities at 80% and 90% specificities (Fig. 5). The over-
all accuracy was 85.6% for the testing set (Table 7). The if–
then rules generated from ANFIS were shown in Fig. 6.
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Fig. 5. Area under the ROC curve for ANFIS was 0.925 with 0.889 and
0.882 sensitivities at 80% and 90% specificities for the testing set.
4. Discussion

The previous cross-sectional studies have revealed that
RNFL thickness measured by OCT can discriminate glau-
comatous from normal eyes (Chen et al., 2005; Chen et al.,
in press; Hoh et al., 1998; Horn et al., 1999; Schuman et al.,
1995; Weinreb et al., 1995). Our recent work (Chen &
Huang, 2005; Huang & Chen, 2005; Huang, Chen, &
Hung, 2005) also confirmed that combined both RNFL
thickness and ONH parameters in Stratus OCT showed
promise in discriminating glaucomatous from normal eyes
using automated classifiers. There have been some reports
using traditional and commonly used classification meth-
ods to help glaucoma diagnosis such as artificial neural net-
works, supported vector machine, and linear discriminant
analysis (Bowd, Chan, & Zangwill, 2002; Brigatti, Hoff-
man, & Caprioli, 1996; Brigatti, Nouri-Mahdavi, & Weitz-
man, 1997; Goldbaum, Sample, & Chan, 2002; Goldbaum,
Sample, & White, 1990, 1994; Henson, Spenceley, & Bull,
1997; Huang et al., 2005; Iester, Jonas, & Mardin, 2000;
Mutlukan & Keating, 1994; Wollstein, Ishikawa, & Wang,
2005). However, there is no research available on glaucoma
diagnosis with ANFIS application. Therefore here we have
presented a new method for detecting glaucoma obtained
from the summary data reports from Stratus OCT. We
chose fuzzy logic in this system due to the uncertainty in
the glaucoma classification, which is a result of imprecise
boundaries between two classes ‘‘normal’’ and ‘‘abnor-
mal’’. Using fuzzy logic enabled us to use this uncertainty
in the classifier design and consequently to increase the
credibility of the system output.



Fig. 6. The if–then rules generated from ANFIS results.
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Neuro-fuzzy systems are fuzzy systems which apply arti-
ficial theory to determine the fuzzy sets and fuzzy rules by
processing data samples. ANFIS utilizes the mathematical
properties of artificial in tuning rule-based fuzzy systems
that approximate the way human beings process informa-
tion. Further investigations are required to determine if
an appropriate fuzzy inference system can be designed
using generalized membership functions applicable to a
wide range of patient group. A question is always encoun-
tered when ANFIS is using: readability or precision. If a
readable result is desired, we might be willing to accept a
sub-optimal performance of the whole system. A Mam-
dani-type fuzzy system is a typical example of this. Con-
versely, if the linguistic interpretations of the fuzzy rules
and more precise results are interested, a Sugeno-type fuzzy
system is suitable (Nauck & Kruse, 1999). In our study, A
Sugeno-type fuzzy system aiming to obtain better perfor-
mance was chosen.

Compared ANFIS with ANN, unlike the black-box
approach of ANN, the ANFIS approach is more transpar-
ent. Interpreting the ANN is very difficult. The problem-
specific qualitative modeling representation can be easily
understood and can be translated into medical terms to
assist the day-to-day clinical diagnosis. Experts can incor-
porate into the selection of the inputs and the manipulation
of model rules. The main features and advantages of the
feature selection and the ANFIS developed in this paper
are described as follows: (1) the optimal input set is deter-
mined based on the response table and ANOVA through
orthogonal array experiments; (2) a general framework
that combines ANN and fuzzy logic system is developed;
(3) the non-linear ability in ANFIS; (4) fast processing
time for decision making; (5) ANFIS beyond its classifica-
tion performance increases the comprehensibility of the
system.

Recently, there were some studies evaluating Stratus
OCT in glaucoma diagnosis. Wollstein et al. (2005)
reported that the highest area under ROC curves for distin-
guishing between groups were for ONH parameters (rim
area = 0.97, horizontal integrated rim width = 0.96, verti-
cal integrated rim area = 0.95) and peripapillary nerve fiber
layer (NFL) thickness (ROC area = 0.94) followed by mac-
ular volume and thickness (both 0.80). A statistically signif-
icant difference existed in ONH and NFL areas under ROC
curves when compared with macular area under ROC
curves (P 6 0.007, for both). The result showed that OCT
ONH and NFL parameters provided similar discrimina-
tion capabilities between healthy eyes and those of glau-
coma patients and superior discrimination capabilities
when compared with macular parameters. Meanwhile,
Medeiros, Zangwill, and Bowd (2005) also reported that
no statistically significant difference was found between
the area under ROC curves for the RNFL thickness
parameter with the largest area under ROC curve (inferior
thickness, ROC area = 0.91) and the ONH parameter with
largest area under ROC curve (cup/disk area ratio, ROC
area = 0.88) (P = 0.28). The RNFL parameter inferior
thickness had a significantly larger area under ROC curve
than the macular thickness parameter with largest ROC
area (inferior outer macular thickness, ROC area = 0.81)
(P = 0.004). However, a combination of selected RNFL
and ONH parameters resulted in the best classification
function for glaucoma detection with ROC area of 0.97
when applied to the independent sample. The best individ-
ual parameter was inferior quadrant thickness with ROC
area of 0.887 in our study, and the result is similar to other
study (Medeiros et al., 2005). Although the classification
capability of single individual parameters is not good
enough, the discriminating power increased after ANFIS
classification was applied. To review the currently available
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evidence on the use of OCT for diagnosis and evaluation of
glaucoma, several studies have shown that RNFL assess-
ment with OCT is able to discriminate patients with glau-
comatous visual field loss from normal subjects. The area
under the ROC curves for the earlier versions of the
OCT to the latest model of Stratus OCT ranged from
0.79 to 0.97 depending on the parameters and characteris-
tics of the population evaluated (Chen & Huang, 2005;
Guedes, Schuman, & Herzmark, 2003; Huang & Chen,
2005; Huang et al., 2005; Kanamori, Nakamura, & Escano,
2003; Medeiros et al., 2005; Williams, Schuman, & Gamell,
2002; Zangwill, Bowd, & Berry, 2001). Besides, recent evi-
dence also points toward the use of optic disc topography
measurements for glaucoma evaluation and to a possible
improvement in the diagnostic accuracy when RNFL and
optic nerve head parameters are combined (Chen &
Huang, 2005; Huang & Chen, 2005; Huang et al., 2005;
Medeiros et al., 2005). Therefore, Stratus OCT did show
promise in glaucoma diagnosis and evaluation. However,
because of the changing software in the new machine and
the lack of normative database in Oriental population espe-
cially the huge population of the Chinese, an efficient and
reliable classification method is strongly urgent for Chinese
population at this time.

Although the result is good in our study, there still
leaves some more rooms on variable selection before the
application of ANFIS. In this study, the orthogonal array
was used to determine which and how many variables
should be used as the input of the ANFIS. However, the
ANFIS result might be inconsistent when different vari-
ables are used as the input of ANFIS. Moreover, the
orthogonal array was used again as the parameter design
for factor levels of ANFIS. If different factor levels are used
in the model, the result will not be guaranteed. While
ANFIS can provide useful information and support to
the medical experts through identification of patterns that
may not be readily apparent, human intervention to exploit
the extracted knowledge is strongly recommended. The
physician’s intuition and interpretive skills are un-replace-
able. Our results demonstrate promise that ANFIS tech-
nique can provide assistance in making decision on
glaucoma diagnosis. We hope that our efforts in develop-
ment of the automated classifiers can make strides in glau-
coma diagnosis in Chinese population.
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